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The Pi Chamber is a cloud chamber at Michigan Technological University that uti-
lizes moist turbulent Rayleigh-Bénard flow between two temperature-controlled, saturated
plates to create cloud conditions in a controlled laboratory setting. This experimental
apparatus has been the source of numerous scientific studies but also offers an advan-
tageous platform with which to test numerical modeling approaches. In this study, the
primary goal is to use direct numerical simulation (DNS) with Lagrangian aerosol/droplet
microphysics to recreate, as realistically as possible, the conditions inside the Pi Chamber.
The biggest discrepancies between the DNS and laboratory setups are the Rayleigh number
(Ra = 7.9 × 106 in the DNS) and the use of periodic lateral boundary conditions. Nonethe-
less, numerical experiments are conducted for two published Pi Chamber cases: steady
aerosol injection and the resulting statistically steady-state cloud and transient conditions
when aerosol injection is shut off. Generally speaking, the DNS is able to capture many
of the salient features observed in the Pi Chamber experiments, both qualitatively and
quantitatively, including microphysical details and influences on the fluctuating ambient
saturation in the chamber. From the DNS, Lagrangian statistics are interrogated which
are otherwise inaccessible from the experimental view. In particular, the supersaturation
fluctuations seen by droplets are observed to deviate from a Gaussian distribution—a
common assumption in stochastic modeling—and the probability distribution of droplet
lifetime does not adhere to the expected behavior assuming solid particles settling in a
quiescent medium.

DOI: 10.1103/PhysRevFluids.7.020501

I. INTRODUCTION

The importance of atmospheric clouds on weather and climate can hardly be overstated, and yet
it is widely recognized how difficult it is to study their microphysical details. This is partly due to
the multiscale nature of clouds [1,2] but is also, in part, due the difficulties inherent in measuring
processes occurring at scales of centimeters to micrometers at distances kilometers above the Earth’s
surface, while traveling at speeds of approximately 100 m s−1 (most measurements of clouds are
from airplanes). There are also practical difficulties associated with making in situ measurements
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of inherently transient events such as cloud formation and dissipation. To help combat this, the
Pi Chamber (named because of the 3.14-m3 volume with the cylinder in place) was created at
Michigan Technological University to study turbulent cloud properties at the laboratory scale [3].
The key element of the chamber is that cloud conditions can be created and sustained for long time
periods (hours) in steady state, which allows for statistical convergence of averages and observation
of relatively rare events.

The chamber has been described elsewhere [3]. Here we outline key aspects which are pertinent
for the current investigation. Central to the operation of the chamber are temperature-controlled top
and bottom surfaces, from which Rayleigh-Bénard flow can be generated. In addition, these upper
and lower surfaces can be kept saturated, which, owing to the nonlinearity of the Clausius-Clapeyron
relationship, can naturally generate supersaturated conditions (relative humidity exceeding 100%)
in the chamber interior. In the context of real clouds, the Pi Chamber temperature gradient is
a mechanism for driving a flux of water vapor into the system and can therefore be taken as
analogous to the strength of an updraft in the atmosphere (as opposed, for example, to suggesting
that there are 10 degree differences of the span of one meter in the atmosphere). The flow in
the chamber is turbulent (Ra ≈ 108–109), though a large-scale circulation develops as expected
[4,5]. This turbulent experimental environment is applicable to better understanding fundamental
processes in the atmosphere where a supersaturation (or subsaturation) is created by mixing. For
example, in many stratocumulus clouds mixing at the cloud top plays an important role. In cumulus
clouds, mixing at cloud edge (entrainment) is thought to be key to the evolution of the cloud
droplet size distribution. In either case, fluctuations in the scalar fields (temperature and water vapor
concentration) and therefore the saturation ratio and the resulting responses of cloud droplets are of
interest. When aerosol particles are injected into the supersaturated chamber at known rates, they
serve as cloud condensation nuclei (CCN) on which droplets are formed; the details of this process
and the resulting drop size distribution can be studied in unprecedented detail.

In steady-state conditions, the injection of aerosol particles is balanced primarily by droplet
removal by settling. Other loss mechanisms of droplets and aerosol particles are of secondary
importance [6]. Investigations of stochastic condensation [7,8], relative dispersion [6,9], activation
[10,11], cloud glaciation [12], and radiative transfer [13] have been based on the resulting drop size
distributions in such conditions.

Experimental limitations, however, are always present, and certain quantities of interest are
inaccessible to direct observation. For example, numerical simulations can provide time-resolved,
three-dimensional information over the full flow domain, whereas experimental measurements are
typically limited to point measurements. For the Pi Chamber specifically, this could potentially mask
potential statistical inhomogeneities due to persistent circulation patterns or the effect of boundary
layers which cannot be resolved with current instrumentation in the chamber.

More importantly, perhaps, is the ability of a numerical simulation to provide Lagrangian
information—something that is not currently possible in the Pi Chamber experiments (or field
observations for that matter). The cloud droplet size distribution is a result of the time history of the
environment experienced locally by individual droplets: specifically, the fields of temperature and
water vapor yield a scalar supersaturation field that determines the growth of cloud droplets and in
turn responds to that growth. As a result, there is a great need for establishing Lagrangian models of
aerosol activation and growth. For example, Paoli and Shariff [14], Sardina et al. [15], Siewert et al.
[16] developed stochastic models in order to explore the broadening of the droplet size distribution
(DSD) due to turbulent fluctuations, which requires knowledge of the fluctuating supersaturation
field felt by the droplets as they are advected throughout the domain. These recent contributions
can be considered extensions of the concept of stochastic condensation, e.g., see Cooper [17] and
the discussion and references therein. In this investigation we treat droplets from a Lagrangian
point of view while resolving the fluid turbulence, which has been used numerous times to gain
insight into droplet dynamics in idealized turbulent flows [18–21]. We consider the full physics of
droplet growth, including the possibility of activation and deactivation of aerosols, which is also
inherently related to the Lagrangian sampling of the supersaturation field [10,11]. Finally, we note
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that the droplet removal problem is an underexplored aspect that is fundamental to the water and
heat budgets within the convective flow; here also a Lagrangian perspective can provide unique
insights.

Finally, it is worth putting this study into context among the previous comparisons to the Pi
Chamber. Thomas et al. [22] perform large eddy simulation of the full Pi Chamber domain using
the system for atmospheric modeling, including the sidewalls. While much of the discussion was
focused on the sidewall treatment, the microphysical evolution, as well as its effects on the humidity
and turbulence levels in the air, were found to be similar to the experimental observations. The
work of Grabowski [23] focused on comparing a Lagrangian cloud model (LCM) versus a bin
microphysical scheme, again seeing general agreement with the experimental observations. Other
direct numerical simulation (DNS) studies, such as Saito et al. [24] and Thomas et al. [25], idealize
the domain to consider isotropic, homogeneous turbulence, in an effort to focus on the core region of
the chamber. An even simpler representation of the chamber dynamics, that of Krueger [26] which
does not resolve turbulence but instead analyzes a model for the evolution of the DSD, explores
the role of mean supersaturation in defining the DSD. Presently, we perform DNS of the entire
Pi Chamber, focusing in particular on the frequency of activation and deactivation, the regimes of
supersaturation fluctuation, the transient evolution of cloud cleaning, and the processes controlling
the DSD. Computational expenses prevent the full range of turbulent scales to be matched between
the DNS and the experiments, but this first attempt at a fully resolved simulation of cloud droplet
activation and growth in turbulent Rayleigh-Bénard flow stands to move forward our understanding
of turbulence-microphysics interactions in a similar way to other DNS simulations of atmospheric
processes [27].

The goal of the present work is to establish a DNS model which aims to capture the salient
features of the Pi Chamber as accurately as possible, despite not being able to achieve the Rayleigh
number of the experimental flow due to computational expense. We follow the experimental proto-
cols of Chandrakar et al. [7] and Chandrakar et al. [6], which provide information on steady-state
and decaying clouds, respectively. After establishing a comparison of measured quantities between
the DNS and the experiments, including droplet number concentrations and DSDs as a function of
aerosol injection rate, we use the DNS to calculate quantities which are inaccessible to the observa-
tions. This includes lifetime and activation histories of the aerosols, as well as the supersaturation
fields they experience during their lifetimes. As will be seen, both of these quantities deviate from
their often-assumed forms, suggesting potential differences between turbulent Rayleigh-Bénard
flow and idealized isotropic, homogeneous turbulence.

II. NUMERICAL FRAMEWORK

In this study we employ DNS for the air phase at a reduced Rayleigh number, which explicitly
resolves all scales of turbulent motion. These motions are coupled to Lagrangian droplets, using
the “superdroplet” or LCM framework developed and used elsewhere [28–30], where a single
computational particle represents an ensemble of aerosols/droplets and evolves in a Lagrangian
frame of reference according to the local air properties. The computational model used here is the
same as that used by Richter et al. [31] for studying the evolution of marine fog, except configured
to replicate the conditions in the Pi Chamber. Below we provide a brief overview of the model;
additional details can be found in Richter et al. [31], Park et al. [32], or Helgans and Richter [33].

For the air phase, turbulent Rayleigh-Bénard flow is developed in a horizontally periodic domain
with solid walls at the top and bottom (see Fig. 1). The top and bottom wall temperature and
relative humidities are prescribed as Ttop, Tbot and RHtop, RHbot, respectively, while the air velocity
is governed by a no-slip condition. Following Chandrakar et al. [7] and Chandrakar et al. [6], we set
Tbot = 299 K and Ttop = 280 K, with RHbot = RHtop = 100% (i.e., saturated). The numerical setup
is similar to that of Park et al. [32], except with moist droplet microphysics included.

The domain size is [Lx, Ly, Lz] = [2 m, 2 m, 1 m], a similar aspect ratio as the Pi Chamber,
although the numerical model is horizontally periodic and thus does not have sidewalls (x and y
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FIG. 1. Representative snapshot of Pi Chamber DNS. Colored isosurfaces are the qv = 12.5 g kg−1 and
qv = 17.5 g kg−1 surfaces, and black dots represent the computational droplets.

are the horizontal directions, z is the wall-normal direction). As discussed in detail in Thomas et al.
[22], without sidewalls the supersaturation levels in the domain interior would approach 20% in the
absence of aerosols, and in their presence the droplet growth would be unrealistic. This is due to the
fact that in the Pi Chamber, the sidewalls act as a sink of moisture since their temperature is set to
be the average temperature of the upper and lower walls, and saturation is not maintained at their
surface. To mimic this effect in the present simulations, a volumetric sink term is included in the
water vapor conservation equation, whose strength is chosen by meeting a target volume-averaged
supersaturation level in the simulation—in this case chosen to be SStarget = 3.3%, although this
could be set to any desired value. Note that this is a different strategy than that of Thomas et al. [22]
or Grabowski [23], who attempt to represent the sidewalls more directly using a flux model and a
penalty relaxation method, respectively.

Thus in the present model, the equations governing mass, momentum, and energy conservation
in the air phase under the Boussinesq approximation are as follows:

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −∇π + k̂
g

T0
T ′

v + ν∇2u + Sm, (2)

∂T

∂t
+ u · ∇T = α∇2T + ST , (3)

∂qv

∂t
+ u · ∇qv = �∇2qv + Sv + Sside, (4)

where u is the fluid velocity vector, T is the temperature, qv is the water vapor mixing ratio, and π

is a pressure variable which enforces the divergence-free condition of Eq. (1). Buoyancy is driven
in the vertical direction k̂ by the acceleration of gravity g, a reference temperature T0 = 300 K, and
the perturbation to the virtual temperature Tv = (1 + 0.61qv )T . The diffusivities of momentum,
temperature, and water vapor are ν, α, and �, respectively. The terms Sm, ST , and Sv are the sources
of momentum, temperature, and vapor due to the droplets, and their full expressions can be found
in Richter et al. [31]. Note that the buoyancy term in Eq. (2) does not explicitly include the effects
of the suspended droplets, as is sometimes done for simplicity [34], since the momentum exchange
term Sm naturally incorporates this tendency. Finally, the term Sside in Eq. (4) is the water vapor
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source/sink term which, as discussed above, allows us to meet a target mean volume supersaturation
in the domain, thus mimicking the effects of the sidewalls in the Pi Chamber. Sside is constant
and uniform in time and throughout the volume, and the determiniation of its value is described
in detail below. Equations (1)–(4) governing the air phase are solved using a pseudospectral dis-
cretization in the horizontal directions, and second-order finite differences in the vertical direction.
The [Lx, Ly, Lz] = [2 m, 2 m, 1 m] domain is discretized using [Nx, Ny, Nz] = [128, 128, 128] grid
points. Time integration is performed using a third-order Runge-Kutta scheme and a constant time
step of �t = 0.05 s.

Aerosols and water droplets are tracked from a Lagrangian frame of reference:

dxi
p

dt
= vi

p, (5)

dvi
p

dt
= c1

τp

(
u f − vi

p

) − gpk̂, (6)

ddi

dt
= c2(q f − q∗), (7)

dT i
p

dt
= c3

(
T i

p − Tf
) + c4

ddi

dt
, (8)

where the coefficients c1, c2, c3, and c4 are used to simplify the equations down to their fundamental
form. The full equations, which include the droplet and solute material properties, are provided
in the Appendix. The droplet equations (5)–(8) are integrated using an implicit, backward Euler
scheme with the same �t as used for the surrounding air. The evolution of the ith particle’s position
xi

p, velocity vi
p, diameter di, and temperature T i

p depend on the local fluid velocity u f , humidity q f ,
and temperature Tf interpolated to the droplet location using sixth-order Lagrange interpolation.
The water vapor mixing ratio at the droplet surface, q∗, is based on Köhler theory, including both
droplet curvature and solute effects (a full expression can be found in Richter et al. [31] and in the
Appendix). Here we consider a solute of pure NaCl, and the aerosols have a critical activation radius
and supersaturation of 0.94 μm and 0.076%, respectively. The timescale τp = ρpd2/18νρ f is the
Stokes acceleration timescale, indicating how quickly a droplet with density ρp can be accelerated
in a fluid with density ρ f .

In addition to these properties, according to the superdroplet framework [29], each particle also
has a multiplicity ξ i which represents the total number of real droplets represented by the particle.
While the code has the capability of representing collision/coalescence, the primary mechanism
by which the multiplicity can change, we do not consider this here and thus the multiplicity for an
particular particle stays constant throughout the entire simulation. The multiplicities in the current
simulations range from 10 at an injection rate of ṅ = 1 cm−3 min−1 to 10 000 at an injection rate
of ṅ = 100 cm−3 min−1. These choices ensure that there are, on average, at least 3 particles per
computational grid cell in all simulations [29]. We have also conducted convergence tests to verify
that droplet and supersaturation statistics are robust to this choice of multiplicity (not shown here).

In the Pi Chamber experiments, the dimensionless Rayleigh number Ra = g�T L3
z /(T0να) is on

the order of Ra ∼ 109, where �T is the difference Tbot − Ttop. Due to computational constraints,
however, the DNS in the current simulations is restricted to Ra = 7.9 × 106, which is accomplished
by setting the gravity felt by the fluid to g = 0.043 m s−2. This is as opposed to changing the
material properties ν or α or the temperature difference �T , since these parameters are essential
for establishing the proper supersaturation levels, thus maintaining the proper interaction between
the humidity fields and the suspended droplets (note that other related studies take the former
approach of modifying the viscosity, for example Thomas et al. [25] and Grabowski and Thomas
[35]). With this lower value of Ra, however, we seek to ensure that the dimensionless settling
velocity of the droplets matches that of the experiments so that the droplet fall speeds relative
to the turbulence strength remains the same. In this regard, we take as a characteristic droplet
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settling velocity ws = τ 1μm
p gp, which is the Stokes settling velocity of a 1-μ-diameter droplet in

air. As a characteristic fluid velocity scale, we take the buoyancy velocity Ubuoy = √
g�T Lz/T0

and hold the ratio ws/Ubuoy = 4.4 × 10−5 as the same as what it would be in the experimental
chamber. This requires setting the gravity felt by droplets to be different than that felt by the flow
(gp = 0.65 m s−2) but achieves dynamic similarity between the experiments and DNS in regards
to droplet sedimentation. The corresponding free-fall buoyancy timescale τbuoy = Lz/Ubuoy is
roughly 19 s.

With these flow and droplet parameters, the dissipation rate near the domain centerline is
O(10−6 m2 s−3), which corresponds to a droplet Stokes number St = τp/τK = O(10−6) where τK

is the centerline Kolmogorov timescale, thus suggesting that droplet dynamics in these simulations
are dominated by activation/growth and settling rather than inertial effects. It is worth noting that
the grid size required to achieve the experimental value of Ra ∼ 109 would require upwards of
O(10003) grid points to resolve both the turbulent mixing in the domain interior, as well as the
details of the thermal boundary layer at both the top and bottom wall [36]. The primary effect of
reducing to Ra = 7.9 × 106 is that the large-scale circulation is weaker than it would be in the
experimental chamber. Thus the turbulence kinetic energy, and correspondingly the dissipation rate,
are much lower (in a dimensional sense) in the DNS than would be expected in the experiments.
Accordingly, as noted above, we modify the droplet sedimentation rate so that ws/Ubuoy matches
the experimental values and focus in this study primarily on the microphysical properties since
we do not necessarily expect certain turbulence statistics (e.g., spectra) to quantitatively match the
experimental values. Instead, the hypothesis here is that the supersaturation fluctuations drive the
microphysical processes of interest, and the Rayleigh number is sufficiently high that the droplet
and aerosol behavior matches that of the experiments. Indeed, the results shown below suggest that
we have generated a fluctuating environment sufficient for recreating observed microphysics and
that the details of the turbulence statistics are not as important as the process of droplets responding
to realistic supersaturation fluctuations.

Initially, the domain is spun up in the absence of any aerosols or droplets, until the turbulent
Rayleigh-Bénard flow reaches a statistically steady state. As this is occurring, the spatially uniform
vapor sink Sside is actively controlled until the desired volume-mean supersaturation SStarget is
achieved. This precursor simulation is performed prior to any of the aerosol simulations reported
below, and the resulting constant value of Sside is tested in an unladen run to ensure that it provides
the desired SStarget. Once this value of Sside corresponding to SStarget is determined, it is held constant
for all future aerosol loadings since it is meant to represent the assumed-unchanged sidewall sink.
For the simulations presented in this work, a value of Sside = −2.15 × 10−6 (kg/kg) s−1 m−3 is
used.

Once the statistically steady flow has been developed, we inject aerosols in order to reach the
steady-state cloud conditions analyzed by Chandrakar et al. [7], and the aerosol injection rate is the
primary parameter we vary across the simulations. See Fig. 2 for a demonstration of the adjustment
in relative humidity toward a statistically steady state as aerosols are injected at different rates.
Lagrangian particles are continually initialized at random locations along the domain centerplane
at a specified rate, with monodisperse, dry diameters of di = 100 nm and uniform hygroscopicites
associated with NaCl salt (see Richter et al. [31]); once injected into the chamber, they grow to
their hydrated size which is close to 1 μm. Since full Köhler physics is considered, the process of
activation and condensational growth is naturally handled by the Lagrangian microphysical model—
this is in contrast to both Thomas et al. [22] and Grabowski [23], who make approximations as to the
process of both injection and activation. In the case of Thomas et al. [22], which uses spectral bin
microphysics, injection is mimicked by imposing a droplet number concentration in the domain
interior. Grabowski [23], on the other hand, uses a modified Twomey activation scheme where
supersaturation fluctuations dictate the number of new, activated droplets to initiate.

From an ensemble of Lagrangian time series of tracers in the unladen flow, multiple timescales
can be calculated. First, to describe the quasiperiodic, recirculating trajectories exhibited by
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FIG. 2. (a) Volume-averaged relative humidity 〈RH〉 and (b) standard deviation σV
RH of volume-averaged

relative humidity as a function of time for all aerosol injection rates.

Rayleigh-Bénard flow, a frequency spectrum is constructed of the Lagrangian vertical velocity time
series, and the peak period is calculated to be τrecirc ≈ 3.7 min. This is a characteristic timescale
associated with how long it takes a tracer to complete a circuit from one wall to the other and
back, and will be used to interpret particle lifetimes in a later section. Second, an integral timescale
τI of the flow is calculated by computing the autocorrelation of the Lagrangian supersaturation
seen by tracers in the unladen case. As Table I shows, this can be compared to the cloud or
phase relaxation time τc = (2π〈nd〉〈d〉�)−1 to create a Damköhler number Da ≡ τI/τc, where the
limit of Da � 1 corresponds to systems where inhomogeneous droplet properties can be expected
due to their rapid response as compared to the turbulence [20]. From Table I, it is clear that the
injection rates considered here begin around Da = O(1) and then increase into this inhomogeneous
range. Here 〈nd〉 is the mean droplet number concentration after a statistically steady state has been
achieved, and 〈d〉 is the mean droplet diameter. Throughout this study, volumetric averages over
the full domain are denoted with angle brackets 〈·〉, while horizontal averages are denoted with
overlines ·. We also note that much of the subsequent analysis is done in dimensional units, since
one primary goal is to compare to specific experimental measurements; however, we recognize the
insight gained by considering nondimensional quantities and relate features to the above timescales
as appropriate.

TABLE I. Simulation parameters. Ra is the Rayleigh, held the same across the simulations. τbuoy is the free
fall buoyancy timescale, τrecirc is a characteristic recirculation timescale calculated by peak of the frequency
spectrum of Lagrangian tracers, τc is the phase relaxation time, τI is the Lagrangian integral timescale of the
flow, calculated from Lagrangian tracer trajectories of supersaturation in the unladen flow, and Da = τI/τc is
the Damköhler number.

Simulation no. ṅ (cm−3 min−1) Ra τbuoy (s) τrecirc (s) τc (s) τI (s) Da

1 0 7.9 × 106 19 222 – 60 –
2 1 7.9 × 106 19 222 41 60 1.5
3 3 7.9 × 106 19 222 14 60 4.3
4 10 7.9 × 106 19 222 4 60 17
5 30 7.9 × 106 19 222 1 60 56
6 100 7.9 × 106 19 222 0.4 60 153
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The growth of the droplets, the resulting cloud, as well as the response of the background
air flow are monitored until a statistically steady state is achieved for each injection rate. Then,
in Sec. III B, we abruptly shut off the constant aerosol injection rate to investigate the transient,
cloud-cleaning conditions explored in Chandrakar et al. [6]. Table I provides an overview of the
simulations considered presently.

III. RESULTS

A. Steady state

1. Humidity fluctuations

We begin by characterizing the changes to the relative humidity in the chamber as a result of
aerosol injection. Shown in Fig. 2 are time series of the volumetric mean and variance of relative
humidity in the domain. As expected, the unladen 〈RH〉 fluctuates around the desired 103.3% and
also exhibits the highest standard deviation σV

RH. Once aerosols are introduced, the volume mean
〈RH〉 quickly approaches saturation, and Fig. 2(b) shows that the fluctuations in 〈RH〉 are suppressed
with increasing injection rate. This behavior is similar that observed in the Pi Chamber and reflects
the ability of large numbers of aerosol particles to quickly extract excess moisture—otherwise
understood as a decrease in the cloud (or phase) relaxation time τc with increasing aerosol number
concentration [20]. As the aerosol injection rate is increased, Fig. 2(b) shows that the volume-based
relative humidity fluctuations are suppressed to near-zero at the highest injection rates, and that
their temporal variability is diminished as well. It will be shown later that although σV

RH is small, the
fluctuations still facilitate aerosol deactivation/reactivation throughout the droplet lifetimes.

Once at the statistically steady state, defined herein as t > 50 min, Fig. 3 shows the temporally
and horizontally averaged profiles of several thermodynamic quantities at the different aerosol
injection rates. While the volume-mean relative humidity target is set to SStarget = 3.3%, Fig. 3(a)
shows that the horizontally averaged RH varies considerably with height for the unladen case. With
aerosol injection, the mean centerline RH drops close to saturation levels and even below for the
case of the lowest injection rates. The presence of subsaturated conditions reflects the combined
presence of the sidewall water vapor sink along with an insufficient number of droplets to replenish
the water vapor field. At higher injection rates the profile of RH becomes more uniform with height
as the fluctuations are systematically reduced at the centerline [Fig. 3(b)].

Near the upper and lower boundaries, peaks of both RH and σRH are seen and result from the
different molecular diffusivities of temperature and water vapor (see the discussion in Chandrakar
et al. [37]). In turbulent Rayleigh-Bénard flow, these peaks roughly correspond to the upper limit of
the boundary layer (approximately 10 cm in the present simulations), and their vertical extent would
be expected to decrease with increasing Ra. As already seen in Figs. 2(b) and 3(b) shows that the
variance of the relative humidity fluctuations are significantly damped throughout the entire domain,
even near the walls. While the presence of aerosols pushes RH toward saturation throughout the
entire domain, especially at the highest injection rates, Figs. 3(c) and 3(d) show that these result from
somewhat subtle modifications to the temperature and water vapor mixing ratios, in part because the
boundary values of these quantities are held fixed in all cases.

Since the fluctuations of supersaturation are critical for developing stochastic models of droplets
which can capture realistic evolution of the droplet size distribution [15,17], it is worth examining
their statistics in the present calculations. It is shown in Chandrakar et al. [7] that the fluctuations of
supersaturation in the unladen flow are very nearly Gaussian. This is also commonly implemented
in simulations of homogeneous, isotropic turbulence that include droplet growth (e.g., Ref. [24]).
It has recently been shown, however, that in Rayleigh-Bénard convection with adiabatic sidewalls
the supersaturation distribution is negatively skewed [37,38]. The simulations of Thomas et al. [22],
meanwhile, see a slight non-Gaussianity, with preference for supersaturation events, presumably
due to the influence of unsaturated sidewalls. Here, Fig. 4(a) shows in the solid blue line that
the supersaturation fluctuations at the centerplane are slightly non-Gaussian as well, exhibiting a
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FIG. 3. Temporally and horizontally averaged profiles of (a) relative humidity RH, (b) its standard deviation
σRH, (c) water vapor mixing ratio qv , and (d) temperature T as a function of height across the domain. Line
colors are the same as in Fig. 2(a).

modest skewness toward positive supersaturation events. The skewness of the unladen distribution
in Fig. 4(a) is 0.54, and the kurtosis is 2.9; the Gaussian fit is plotted in a dashed line. These
deviations from a normal distribution highlight potential differences between centerline statistics
of Rayleigh-Bénard turbulence and homogeneous isotropic turbulence, but we suspect that these
statistics might become more Gaussian with increasing Ra as the turbulence becomes stronger in
the interior. When comparing to the PDF provided by Chandrakar et al. [7], the small amount of
skewness in the experiments appears to be on the subsaturation side, qualitatively opposite to what
is seen in the present simulations although the deviations are small.

When aerosols are added, Figs. 4(b)–4(f) demonstrate the narrowing of the s′ PDF, as already
implied by Figs. 2 and 3. As the injection rate is increased, the tails of the distribution rapidly
collapse, and certain non-Gaussian features are enhanced, especially in the tails on the right side
of the distributions. These apparent skewnesses indicate that even in the presence of aerosols and
cloud droplet growth, it is more likely to have extreme supersaturation fluctuations than it is to have
extreme subsaturation fluctuations. In contrast, both the bin and Lagragian microphysics results of
Grabowski [23] display significant non-Gaussianity, with heavier tails on the left side of the PDF,
although both the injection scheme as well as treatment of activation is quite different in their study.

More interesting, however, is the Lagrangian behavior shown in the circles in Figs. 4(b)–4(f),
namely, the PDFs of s′, but this time as seen by a large number of particles during their lifetime.
In each simulation with aerosol injection, at least 104 randomly chosen aerosols are tagged at their
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FIG. 4. PDFs of supersaturation fluctuation s′, as defined by deviation from horizontal mean. Panels (a)–(f)
refer to the increasing injection rates, starting from the unladen case in panel (a). Solid lines: PDF computed
from the flow at the domain centerplane at multiple times; dashed lines: Gaussian fit to the centerplane PDF;
circles: PDF constructed from the local values of s′ taken along at least 104 droplet trajectories.

initiation, and they output their properties (e.g., position, radius, temperature, ambient conditions,
etc.) at an interval of 0.5 s throughout their entire lifetime, including both activated and unactivated
states. From these full trajectories, the distribution shown in Fig. 4 is constructed by taking all
values of s′ experienced by these particles along their trajectories, where s′ is defined by the local
fluctuation of supersaturation from the horizontal mean at that height.

What is striking when comparing the solid lines and circle markers in Figs. 4(b)–4(f) is the
emergence of heavy tails in the Lagrangian PDFs, revealing potentially large fluctuations of both
sub- and supersaturation when tracking individual droplets. These Lagrangian PDFs are clearly
non-Gaussian, and this observation has strong implications for the development of stochastic droplet
growth models, since those by for example Sardina et al. [15], Chandrakar et al. [7], Desai et al.
[8], and Saito et al. [24] (among others) assume Gaussian supersaturation statistics. The degree to
which this non-Gaussian behavior is a function of Rayleigh number and the sidewall treatment (i.e.,
the volumetric water vapor loss term) is unclear but nonetheless highlights the potential differences
between homogeneous isotropic turbulence and turbulent Rayleigh-Bénard flow.

2. Droplet properties

For the steady-state cloud cases, aerosols are continuously injected until various statistics,
including the DSD, achieve stationarity. This state would also imply that a balance is found
between aerosol injection and aerosol/droplet removal, either through gravitational sedimentation
or deposition to the sidewalls. In the present simulations, the only removal mechanism is through
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FIG. 5. (a) Time series of number concentrations of aerosols (dotted), droplets (dashed), and total (solid),
as defined by the activation state. (b) Steady-state aerosol number concentration na as a function of injection
rate. For the highest two aerosol injection rates, na is the last recorded value. (c) Steady-state droplet number
concentration nd as a function of injection rate. Hollow symbols are from Chandrakar et al. [7], and colors
refer to aerosol injection rates [see legend of Fig. 4(b)].

deposition to the lower boundary, so it is expected that aerosol numbers may be larger than in the
experiments.

To test this, Fig. 5(a) contains time series for the droplet, aerosol, and total (droplet + aerosol)
number concentrations from the time when aerosol injection begins, as defined by their activation
state (radius larger than the critical radius). For the lower injection rates considered, the total
number concentration approaches a constant value, with the number of droplets exceeding that
of the aerosols. This indicates that a steady balance has been reached between aerosol injection,
aerosol activation, and droplet sedimentation out of the domain.

For the highest aerosol injection rate, however, the total droplet number concentration approaches
a relatively constant value after ≈60 min, but the aerosol number concentration continues to rise,
even in exceedance of the number of droplets. Since the aerosols essentially have no other removal
mechanism except through activation, their population builds up, and owing to their very low settling
velocity, this increase in aerosol number would likely continue for a very long time. See for example
the discussion in Thomas et al. [22]. Another way of describing this behavior is by referring to the
activation fraction of the chamber, defined by the ratio of the number of activated droplets to the
total. In the limit of very low injection rate, one would expect an activation of 1—i.e., all aerosols
activate. As the injection rate increases, Shawon et al. [10] show clearly that the activation fraction
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FIG. 6. [(a)–(c)] The droplet mean diameter d , standard deviation σd , and relative dispersion σd/d as a
function of time for the various injection rates. [(d)–(f)] The steady-state d , σd , and σd/d versus ṅ. Hollow
symbols are the experimental measurements from Chandrakar et al. [7].

decreases in the Pi Chamber, down to roughly 0.5 at their highest injection rate. In the current
simulations, as can be seen in Fig. 5, the activation fraction transitions from above 0.5 to a minimum
of 0.4 for the highest injection rate. This reduction with injection rate is qualitatively similar to the
experimental findings, but the complex interplay between aerosol injection and mean/fluctuating
supersaturation has yet to be fully understood [10,11].

Figures 5(b) and 5(c) plot the steady-state number concentration of aerosols (〈na〉) and droplets
(〈nd〉), respectively, against the aerosol injection rate (we take the final value of aerosol number con-
centration for the highest injection rate since it is still increasing). Also included in this figure are the
measured values from Chandrakar et al. [7] (hollow symbols). The aerosol number concentrations
are in good agreement with the measurements, while the droplet number concentrations are mostly
less than the experimental values. A levelling-off of the droplet number concentration is seen in
the experiments which is not observed in the simulations, likely due to the absence of any removal
mechanism other than sedimentation to the lower wall. Another possible explanation is that in the
experiments, small droplets go undetected if they fall below the d ≈ 7 μm threshold of the phase
Doppler interferometer instrumentation [9].

While Fig. 5 illustrates the aerosol and droplet populations approaching a steady state, Fig. 6
provides information about the stationarity of the droplet size statistics. Figures 6(a)–6(c) show
the evolution of the mean droplet diameter 〈d〉, the droplet standard deviation σd , and the relative
dispersion σd/〈d〉 as a function of time for all injection rates. Only droplets which are activated
are included in these statistics, to be consistent with Chandrakar et al. [7]. Immediately after the
initiation of aerosol injection at t = 0, both 〈d〉 and σd overshoot their equilibrium value for all
injection rates, achieving statistically steady values around t ≈ 40 min. In preliminary experiments,
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FIG. 7. (a) Total number concentration nT (droplets and aerosols), horizontally and temporally averaged,
as a function of height; (b) temporal and horizontal mean diameter as a function of height.

this time to achieve stationarity decreases with Ra. For the highest aerosol injection rates, the time
series of both 〈d〉 and σd exhibit clear stationarity, despite the fact that the aerosol and to some
degree the droplet number concentrations continue to rise [cf. Fig. 5(a)]. Equilibrium of the droplet
size statistics are related to the phase relaxation time τc of the droplet collection, which in the
current simulation setup is a much shorter timescale than that associated with establishing a balance
between aerosol injection, activation, and gravitational sedimentation.

Figures 6(d)–6(f) then show the steady-state values of 〈d〉, σd , and σd/〈d〉 as a function of the
aerosol injection rate, compared to the experimental results of Chandrakar et al. [7]. While the
average droplet size is close in value to the experimental measurements, the standard deviation
of diameter is overpredicted in the current simulations, causing an overprediction of the relative
dispersion as well. While the values of σd seen in the simulations of Thomas et al. [22] and
Grabowski [23] were similar to those of Chandrakar et al. [7], the relative dispersions of both were
also much higher than the current results and Chandrakar et al. [7], owing to an underestimate of the
mean droplet diameter. In the current case, the mean droplet diameter is similar to the experimental
values, and the overprediction of σd may be caused by differences in the supersaturation fluctuations,
which we expect to be a function of Ra [37].

Another factor to consider when interpreting not only the current simulation results but also the
experimental measurements is the heterogeneity of droplet statistics. Grabowski [23] comments on
the potential of having differences in the DSD at different horizontal locations at a given time, but
Fig. 7 highlights that even the mean properties vary with wall-normal location in the chamber.

Figure 7(a) shows that the total number concentration nT , containing both aerosols and droplets,
peaks in the domain interior, decreasing near both boundaries. The exception to this is for the
highest two injection rates, where a slight increase in number concentration is found near the lowest
boundary, resulting from smaller droplet sizes which inhibit their gravitational sedimentation out of
the domain. Figure 7(b) then shows the corresponding mean droplet diameter as a function of height,
having a minimum in the domain center where RH is lowest. Near the lower boundary, where peaks
of RH are found (cf. Fig. 3), the droplet sizes are significantly larger than in the domain interior.
To a certain extent this behavior is expected, since aerosols are injected at the centerline and those
which activate would rapidly settle downwards. Furthermore, the mean relative humidity near both
boundaries is larger than the interior (cf. Fig. 3), leading to a larger mean diameters in those locations
relative to the center. As noted above, this effect is expected to decrease with increasing Ra since the
spatial extent of the boundary layer would shrink, but in the present simulations it results in nearly
all droplets increasing in size just before sedimenting, hastening the process.

020501-13



MACMILLAN, SHAW, CANTRELL, AND RICHTER

FIG. 8. Droplet size distributions for all injection rates. The large spike centered at d < 1 μm represents
unactivated aerosols.

Figure 8 shows the steady-state DSDs for each of the injection rates and is meant to be compared
to Fig. 2 of Chandrakar et al. [7]. Qualitatively, we see the spectral broadening process identified by
Chandrakar et al. [7], where a decrease in ṅ leads to a widening of the DSD. A similar broadening
of the DSD is also seen in the DNS of Saito et al. [24], although their DNS setup is considerably
different (homogeneous, isotropic turbulence with a prescribed droplet lifetime). It is also seen in
the model simulations of Grabowski [23].

For the lowest injection rate, the current simulations predict a wider distribution than the
experiments, already noted above regarding the values of σd , while the peak generally compares
well to the experiments (again, this is consistent with the favorable comparison of 〈d〉, discussed
above). Since the Lagrangian framework resolves the aerosol activation process, there is a sharp
peak for all cases which lies below 1 μm, reflecting the unactivated aerosols in the system. The
trough of the DSDs reflects the critical diameter, which is roughly 1.5 μm for all cases.

The true value, however, of the Lagrangian microphysical approach to simulating the Pi Chamber
lies in the numerous quantities which can be measured that are experimentally inaccessible. Of
particular importance is the distribution of droplet lifetime, which in stochastic models must be
specified (e.g., Saito et al. [24]) and can play a major role in determining the DSD shape [26].
As such, Fig. 9 presents four important distributions related to the lifetime of the droplets. First,
Fig. 9(a) shows the PDF of total lifetime, τl , from the moment of aerosol injection until its settling
out at the lower boundary, regardless of its activation state. In the range of short lifetimes (τl �
5 min), there is a notable oscillation of the PDF with residence time, which will be explained below.

With increasing injection rate, consistent with the reduction in 〈d〉 and a narrowing of the DSD
seen previously, the PDF of total lifetime in Fig. 9(a) broadens significantly. A non-negligible
number of aerosols injected in the ṅ = 100 min−1cm−3 can live in excess of an hour (i.e., many
timescales τI , τbuoy, or τrecirc). From Fig. 9(a) we observe that aerosols routinely have lifetimes on
the order of tens of minutes, which is generally on the same order of simple estimates based on
the time it takes a droplet to settle through the domain through quiescent air at the Stokes terminal
velocity ws = τpgp. This timescale, τStokes ≡ Lz/ws, would scale as d−2 assuming solid particles
(i.e., no condensation/evaporation) and no turbulence, and a droplet of d = 10 μm corresponds to
τStokes ≈ 7 min using the values prescribed in the DNS (recall in particular the modified value of
gp used in the DNS). This indicates that a water droplet of this size, which is not changing in size,
would take roughly 7 min to settle in a completely still air environment over a distance of Lz = 1 m.

Corresponding to the distribution of τl in Figs. 9(a) and 10(a) plots the mean of these distributions
〈τl〉 as a function of the mean droplet diameter 〈d〉 for each of the injection rates. In the dotted black
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FIG. 9. (a) PDF of total aerosol residence time τl , from injection until removal from the domain; (b) PDF
of activation times τl,act , from when a droplet is first activated to when it either deactivates or is removed from
the domain; (c) PDF only of times between activation and removal τl,act-sed; (d) PDF of Nact , the number of
times aerosols have been activated during their lifetime in the domain.

line, Fig. 10(a) also shows the estimate provided by τStokes. While the estimate of τStokes provides
values on the same order of the true mean lifetimes 〈τl〉, two important features must be emphasized.
First, the combination of turbulence and droplet growth lead to a distribution that is in reality very
wide [cf. Fig. 9(a)], suggesting that caution is required when prescribing a single value of either 〈d〉
or 〈τl〉 for a given injection rate. Furthermore, the mean lifetime does not scale as d−2 as predicted
by τStokes but instead appears to be inversely proportional.

To further understand this, Fig. 9(b) presents instead the PDF of times during which the droplets
remain activated. This accounts for the fact that droplets in the DNS system routinely deactivate and
reactivate and thus would complicate the prescription of a single settling time (or characteristic size)
to their entire lifetime. In Fig. 9(b), we see that the tails of this distribution are nearly exponential,
with many “activation lifetimes” being less than the total duration of 〈τl〉. This is made clear by
Fig. 9(d), which shows the distribution of the number of times an aerosol is activated during its
lifetime. Even for the low injection rates, there is a non-negligible chance of being reactivated
upwards of 10 times. The mode of this distribution is indeed unity, but it is not uncommon to
have droplets deactivating and reactivating multiple times during their lifetimes, especially at the
higher injection rates. In the atmosphere, this can have profound effects on the CCN distributions
as aerosols are cycled through nonprecipitating clouds [39,40].
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FIG. 10. (a) Mean droplet lifetime 〈τl〉 as a function of mean droplet diameter 〈d〉 for each of the injection
rates ṅ. (b) Same, but for the time from activation until removal. The dashed black line is a power-law fit
〈τl〉 ∝ 〈d〉λ for a fitted value of λ given in the legends, and the dotted black line is the estimate given by τStokes

for each droplet diameter.

Since many of the theories of stochastic condensation do not attempt to account for reactivation
processes, Fig. 9(c) shows the PDF of times between droplet activation and gravitational sedi-
mentation, only for those intervals which are not interrupted by deactivation. Here again we see
a substantially different distribution from the total lifetime in Fig. 9(a), with exponential tails and
times which are shorter than 〈τl〉. Then, Fig. 10(b) shows the same relationship as Fig. 10(a) but
between the mean lifetime between activation and removal and the mean droplet diameter. Here,

we see a slight increase in the slope, with a fitted relationship going as d
−1.3
p , but now the values

are substantially lower than the prediction given by τStokes. The gravitational settling efficiency, and
in particular this depends on droplet growth and boundary layer thickness (i.e., Ra) are important
topics which continue to be studied.

Finally, we comment on the shape of the τl distribution at low residence times and highlight the
importance of a Lagrangian interpretation. Figure 11 shows the τl PDF for the ṅ = 1 cm−3 min−1

case but shows typical trajectories for certain positions along the distribution. On the left side of the
distribution, a peak emerges around τl ≈ 1 min. This is followed by a trough and another peak to
the right (τl ≈ 3 min), beyond which an exponential distribution is established. This nonmonotonic
distribution of τl is directly linked to the dynamics within the chamber. For the leftmost peak, we
plot trajectories of aerosols/droplets which only live between 0.8 and 1.2 minutes. Plotted are time
series of height (top), ambient RH (middle), and diameter d (bottom) for a randomly chosen subset
of trajectories which fall into this range of lifetimes. What is clear is that the droplets in this range,
which begin at the domain midplane, are those which are immediately driven to the lower surface
via turbulent downdrafts. Some of these droplets activate and grow immediately, while others do so
at a delayed time, but all are pushed to the lower surface within a minute of initiation.

For the second peak (and the maximum of the entire distribution), this is seen to be resulting
from a large number of droplets who instead are pushed upwards immediately on initiation. These
spend some time near the upper boundary before they are forced downwards by convective motions.
This peak of 3 min is quite close to the timescale τrecirc, since this scale describes the time taken
by a tracer to recirculate through the flow. Beyond this global maximum in the τl distribution,
the exponential distribution of total residence times is resulting simply from a varying number of
excursions from the bottom to the top as aerosols/droplets ride the convective motions associated
with Rayleigh-Bénard turbulence—a potential strategy for developing stochastic models. Fitting an
exponential to this portion of the distribution provides a characteristic timescale of ∼10 min, which

020501-16



DIRECT NUMERICAL SIMULATION OF TURBULENCE AND …

FIG. 11. In the center is the PDF of total lifetime τl for the ṅ = 1 cm−3 min−1 case from Fig. 9(a). For
each of the three lifetime ranges indicated by the arrows, sample trajectories are given showing the droplet
height, local relative humidity, and diameter. The nonmonotonic PDF of τl at small lifetimes is clearly due to
the periodic circulations which exist in Rayleigh-Bénard turbulence.

is similar to the mean of the distribution and is larger than the characteristic flow scales τbuoy and
τrecirc. The supersaturation experienced by the aerosols is indeed highly variable, while its lifetime
is dictated by whether it falls into the boundary layer when nearing the lower surface. Inside this
layer, as shown in Fig. 3, the high values of RH near the lower surface cause droplets to universally
grow, hastening their removal process.

B. Transient

Following Chandrakar et al. [6], we now briefly examine the transient response of the turbulent
cloud to a sudden cessation of aerosol injection. This is done for all injection rates presented in
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FIG. 12. Transient response of (a) the volume-mean RH and (b) relative humidity variance σ 2
RH as a

function of time after stopping aerosol injection.

the previous section by stopping the aerosol injection at t = 125 min and running the simulations
for an additional 125 min. This transient “cleaning” is important for understanding cloud collapse,
rain formation, and pollution scavenging, and in particular we seek to observe the acceleration of
this process as aerosols (and therefore competition for excess moisture) become scarce, as seen in
Chandrakar et al. [6].

Figure 12 shows the response of the chamber humidity as it adjusts to stopping the aerosol
injection. Both the mean [〈RH〉; Fig. 12(a)] and fluctuating [σV

RH; Fig. 12(b)] relative humidity
approach the unladen values, and the response of σV

RH appears to be underdamped, exhibiting an
overshoot before approaching the equilibrium value. More dramatically, the timing of when the
approach to equilibrium occurs is strongly dependent on the preceding injection rate. The reason
for this is the same as that observed in Chandrakar et al. [6]: At the higher injection rates, a large
reservoir of unactivated, interstitial aerosols builds up [see Fig. 5(a)], and this takes an increasingly
long time to deplete. The size of this unactivated reservoir is related to the activation fraction, which,
as argued above and in Shawon et al. [10], is a strong function of the level of supersaturation
fluctuations. Furthermore, the timing of the increase in RH back to unladen conditions is directly
related to the number concentration of interstitial aerosols, which as shown in Fig. 5(b) are close to
the experimental values.

Figure 13 shows the corresponding time series of various droplet statistics during the same time
intervals. In Fig. 13(a), the depletion of both aerosols and droplets, and how this varies with the
preceding injection rate, is evident. The primary mechanism for aerosol removal in the current
simulations is activation, since there are no sidewalls to deposit onto and since settling is negligible
owing to the low gravitational settling speed. Figure 13(a) demonstrates this, in that at late times the
droplet number concentration 〈nd〉 approaches the total 〈nT 〉. As the droplet number concentration
falls, Fig. 13(b) then shows the corresponding value of Da as it changes in time based on the current
values of 〈nd〉 and 〈d〉. Each case begins above the Da = 1 threshold, indicating a fast cloud droplet
response as compared to the turbulence but eventually transition to a slow droplet response regime
as time goes on. Similarly to Chandrakar et al. [6], as time evolves, the droplet number concentration
decreases with a corresponding rise in the mean droplet diameter.

Figures 13(c) and 13(d) show the mean droplet diameter and standard deviation of droplet
diameter, respectively, and in both cases the accelerating cloud collapse is associated with a rise
in both the mean and fluctuation of droplet diameter. The sharp acceleration is consistent with the
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FIG. 13. Transient response of (a) number concentrations of droplets, aerosols, and their sum. (b) The
transient Damköhler number Da based on the current droplet number density and mean radius (dashed line is
Da = 1); (c) mean droplet diameter; and (d) standard deviation of droplet diameter σd , as a function of time
after stopping aerosol injection.

crossing of the Da = 1 threshold, as the system adjusts from fast to slow microphysics relative to
the turbulence. The behavior of 〈d〉 and σV

d is seen in Chang et al. [3] and Chandrakar et al. [6]
and is explained by the decrease of competition for excess moisture. For some time interval which
depends on the built-up reservoir of aerosols, the droplet diameter and standard deviation remain
constant in time as the activation and settling processes remain in equilibrium. However, as fewer
and fewer aerosols are available for activation, the remaining droplets grow larger owing to the
reduced competition.

Finally, Fig. 14 provides the evolution of the full DSD in the transient cases, where the rise in
both 〈d〉 and σV

d are clear. The general features of these DSD evolutions are similar to those observed
by Chang et al. [3] and show a clear widening of the DSD with time as the aerosols are depleted.
For the lowest preceding injection rate, droplets are seen to grow to nearly 100 μm in size toward
the end of the cloud, although this likely exaggerated due to the large supersaturation fluctuations
present in the system at late times. With larger reservoirs of interstitial aerosols, the evolution of the
DSD is both quantitatively and qualitatively similar to Fig. 10 of Chang et al. [3], although with
different timing owing to the differing amounts of built-up aerosols.
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FIG. 14. The cloud DSD as a function of time for each of the transient cases. Colors represent the logarithm
of the probability and range between −5 to −1. The color scale is the same in all panels.

IV. CONCLUSIONS

This work seeks to use DNS to simulate recent Pi Chamber experiments as closely as possible
in order to shed light on processes and statistics which are unavailable to laboratory measurements.
The simulations are performed at a Rayleigh number of 7.9 × 106, which is significantly lower
than the experimental value, and employ periodic lateral boundary conditions instead of solid walls
(the dimensionless settling velocity of the droplets are chosen to match experimental conditions).
Despite these differences, and the subtleties associated with mimicking water vapor removal at the
wall [22], salient features of the DSD, aerosol, and water vapor statistics are well reproduced by
the DNS. Certain qualitative features, such as the relationship between aerosol injection rate and
activation fraction, match those seen in experiments as well [10].

From this standpoint, several features are observed which extend our understanding of droplet
dynamics in the turbulent Rayleigh-Bénard flow. First, the supersaturation fluctuations seen by the

020501-20



DIRECT NUMERICAL SIMULATION OF TURBULENCE AND …

droplets, from a Lagrangian point of view, are not necessarily the same as those measured from
a stationary probe and appear to have heavy, non-Gaussian tails. This has strong implications on
developing accurate stochastic models of cloud droplet microphysics, since it is the Lagrangian
quantity that is required. In particular, vertical gradients of mean supersaturation are strong near
the walls of the chamber, although the region where this is expected to influence bulk droplet
behavior would reduce with increasing Rayleigh number. In the domain interior, many of the
relevant environmental quantities are uniform, but perhaps non-Gaussian.

Another Lagrangian quantity observed in the DNS are the aerosol/droplet lifetimes. Somewhat
unexpectedly, aerosols can undergo upwards of O(10) activation/deactivation cycles during their
lifetime, confusing the notion of a single lifetime which can be used in models [24,26]. Furthermore,
the scaling of mean droplet lifetime with mean droplet size does not behave as 〈τl〉 ∼ 〈d〉−2 as often
assumed; we instead find an inversely proportional relationship. How this relationship behaves with
Ra, and whether it is a fair assessment to take the mean lifetime and droplet diameter over all
droplets at all times, are important subjects of future research.

Finally, in addition to the comparison of a variety of steady-state statistics seen in Chandrakar
et al. [7], we also observe many of the same transient features which occur when abruptly stopping
the aerosol injection. These were explored experimentally in Chang et al. [3] and Chandrakar et al.
[6], and the rapid acceleration of cloud collapse as the interstitial aerosols are depleted is well
represented in the DNS. Depending on the preceding aerosol injection rate (and therefore reservoir
size), the broadening of the DSD in time near total collapse can be quite dramatic, with a low number
of large droplets rapidly forming and settling out of the domain.

We conclude by stating that DNS of turbulent Rayleigh-Bénard flow is a powerful tool for
understanding not only the Pi Chamber experiments but also by extension the insights into cloud
microphysics which are accessible through such a setup. Processes associated with aerosol compo-
sition and size, as well as the refinement of Lagrangian properties needed by stochastic models are
now possible from a new perspective and will be the subject of ongoing research.
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APPENDIX

Above, Eqs. (5)–(8) were simplified to highlight the basic structure of the droplet location,
velocity, size, and temperature evolution. Here we provide the full equations, which can also be
found in Richter et al. [31]:

dxi
p

dt
= vi

p, (A1)

dvi
p

dt
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TABLE II. Droplet model parameters.

Symbol Description Value/expression

νa Kinematic viscosity of air 1.57 × 10−5 m2 s−1

ρa Density of dry air 1.2 kg m−3

ρw Density of pure water 1000 kg m−3

ρp Density of droplet (inc. solute) Variable
cp,a Sp. heat of air at const. press. 1006 J (kg K)−1

cp,v Sp. heat of water vapor at const. press. 1952 J (kg K)−1

cL Specific heat of liquid water 4179 J (kg K)−1

Lv Latent heat of vaporization 2.44 × 106 J kg−1

Rd Gas constant of dry air 287 J (kg K)−1

Ru Universal gas constant 8.314 J (mol K)−1

Mw Molecular weight of water 0.018 kg mol−1

Ms Molecular weight of solute 0.0584 kg mol−1

σ Air–water surface tension 7.28 × 10−2 N m−1

Sc Dimensionless Schmidt number 0.615
Pr Dimensionless Prandtl number 0.71
Shp Dimensionless Sherwood number Shp = 2 + 0.6 Rep

1/2 Sc1/3

Nup Dimensionless Nusselt number Nup = 2 + 0.6 Rep
1/2 Pr1/3

Rep Droplet Reynolds number Rep = 2ri
p|vi

p − u f |/νa

where, as stated above, u f , q f , and Tf are the air velocity, water vapor mixing ratio, and temperature
interpolated to the droplet location using sixth-order Lagrange interpolation. The water vapor
mixing ratio at the droplet surface, q∗, includes modifications to the water vapor pressure due to
both curvature and salinity:

q∗ = Mw

RuT i
pρa

es exp

[
LvMw

Ru

(
1

Tf
− 1

T i
p

)
+ Mwσ

Ruρwdi
pT i

p

− Ismi
s(Mw/Ms)

ρwπdi3

p /6

]
, (A5)

where Mw is the molecular weight of water, Ru is the universal gas constant, Lv is the latent heat
of vaporization, σ is the surface tension between water and air, I is the number of diassociated ions
in the solute (assumed NaCl), s is an osmotic coefficient, mi

s is the solute mass of the particle,
ρa is the density of air, and ρw is the density of pure water. The saturation vapor pressure es is
evaluated at the local air temperature Tf according to the modified Magnus relation of Alduchov and
Eskridge [41].

In addition to these parameters, Eqs. (A1)–(A5) also contain a number of material properties and
nondimensional parameters which are listed in Table II. In particular, Eqs. (A3) and (A4) include the
Sherwood (Shp) and Nusselet (Nup) numbers, which account for ventilation effects in droplet vapor
and mass transfer from the droplet surface, as well as the Schmidt (Sc) and Prandtl (Pr) numbers,
which specify the vapor and temperature diffusivities.
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